
    4Ysh-                         d Z ddlZ ej                  e      Zd ZeefdZd fdZdd fd	Zdd
 fdZ	 e
d      g e
d      gd d d fdZy)a  Convert (to and) from rdflib graphs to other well known graph libraries.

Currently the following libraries are supported:
- networkx: MultiDiGraph, DiGraph, Graph
- graph_tool: Graph

Doctests in this file are all skipped, as we can't run them conditionally if
networkx or graph_tool are available and they would err otherwise.
see ../../test/test_extras_external_graph_libs.py for conditional tests
    Nc                     | S )N )xs    /var/www/sten-cake5-migrate2.hellocrow.space/lexinfo-master/env/lib/python3.12/site-packages/rdflib/extras/external_graph_libs.py	_identityr      s    H    c                    t        |      sJ t        |      sJ t        |      sJ ddl}| D ]  \  }}}	 ||       ||	      }}
|j                  |
|      }|t        ||j                        r& ||||	      }|rd|d<    |j
                  |
|fi | g|r|dxx   dz  cc<   d|v s{ ||||	      }|d   j                  |d           y)a  Helper method for multidigraph, digraph and graph.

    Modifies nxgraph in-place!

    Arguments:
        graph: an rdflib.Graph.
        nxgraph: a networkx.Graph/DiGraph/MultiDigraph.
        calc_weights: If True adds a 'weight' attribute to each edge according
            to the count of s,p,o triples between s and o, which is meaningful
            for Graph/DiGraph.
        edge_attrs: Callable to construct edge data from s, p, o.
           'triples' attribute is handled specially to be merged.
           'weight' should not be generated if calc_weights==True.
           (see invokers below!)
        transform_s: Callable to transform node generated from s.
        transform_o: Callable to transform node generated from o.
    r   N   weighttriples)callablenetworkxget_edge_data
isinstanceMultiDiGraphadd_edgeextend)graphnxgraphcalc_weights
edge_attrstransform_stransform_onxspotstodatads                 r   _rdflib_to_networkx_graphr"      s    2 JK   K    51aQQB$$R,<:gr?aA&D!"XGR,t, X!#D q!Q'Y&&q|45r   c                 
    d|iS )Nkeyr   r   r   r   s      r   <lambda>r&   I   s
    uaj r   c                 L    ddl }|j                         }t        | |d|fi | |S )a  Converts the given graph into a networkx.MultiDiGraph.

    The subjects and objects are the later nodes of the MultiDiGraph.
    The predicates are used as edge keys (to identify multi-edges).

    :Parameters:

        - graph: a rdflib.Graph.
        - edge_attrs: Callable to construct later edge_attributes. It receives
            3 variables (s, p, o) and should construct a dictionary that is
            passed to networkx's add_edge(s, o, \*\*attrs) function.

            By default this will include setting the MultiDiGraph key=p here.
            If you don't want to be able to re-identify the edge later on, you
            can set this to `lambda s, p, o: {}`. In this case MultiDiGraph's
            default (increasing ints) will be used.

    Returns:
        networkx.MultiDiGraph

    >>> from rdflib import Graph, URIRef, Literal
    >>> g = Graph()
    >>> a, b, l = URIRef('a'), URIRef('b'), Literal('l')
    >>> p, q = URIRef('p'), URIRef('q')
    >>> edges = [(a, p, b), (a, q, b), (b, p, a), (b, p, l)]
    >>> for t in edges:
    ...     g.add(t)
    ...
    >>> mdg = rdflib_to_networkx_multidigraph(g)
    >>> len(mdg.edges())
    4
    >>> mdg.has_edge(a, b)
    True
    >>> mdg.has_edge(a, b, key=p)
    True
    >>> mdg.has_edge(a, b, key=q)
    True

    >>> mdg = rdflib_to_networkx_multidigraph(g, edge_attrs=lambda s,p,o: {})
    >>> mdg.has_edge(a, b, key=0)
    True
    >>> mdg.has_edge(a, b, key=1)
    True
    r   NF)r   r   r"   )r   r   kwdsr   mdgs        r   rdflib_to_networkx_multidigraphr*   H   s,    ^ 
//
CeS%DtDJr   Tc                     d| ||fgiS Nr   r   r%   s      r   r&   r&          	Q1I;7 r   c                 L    ddl }|j                         }t        | |||fi | |S )a  Converts the given graph into a networkx.DiGraph.

    As an rdflib.Graph() can contain multiple edges between nodes, by default
    adds the a 'triples' attribute to the single DiGraph edge with a list of
    all triples between s and o.
    Also by default calculates the edge weight as the length of triples.

    :Parameters:

        - `graph`: a rdflib.Graph.
        - `calc_weights`: If true calculate multi-graph edge-count as edge 'weight'
        - `edge_attrs`: Callable to construct later edge_attributes. It receives
            3 variables (s, p, o) and should construct a dictionary that is passed to
            networkx's add_edge(s, o, \*\*attrs) function.

            By default this will include setting the 'triples' attribute here,
            which is treated specially by us to be merged. Other attributes of
            multi-edges will only contain the attributes of the first edge.
            If you don't want the 'triples' attribute for tracking, set this to
            `lambda s, p, o: {}`.

    Returns: networkx.DiGraph

    >>> from rdflib import Graph, URIRef, Literal
    >>> g = Graph()
    >>> a, b, l = URIRef('a'), URIRef('b'), Literal('l')
    >>> p, q = URIRef('p'), URIRef('q')
    >>> edges = [(a, p, b), (a, q, b), (b, p, a), (b, p, l)]
    >>> for t in edges:
    ...     g.add(t)
    ...
    >>> dg = rdflib_to_networkx_digraph(g)
    >>> dg[a][b]['weight']
    2
    >>> sorted(dg[a][b]['triples']) == [(a, p, b), (a, q, b)]
    True
    >>> len(dg.edges())
    3
    >>> dg.size()
    3
    >>> dg.size(weight='weight')
    4.0

    >>> dg = rdflib_to_networkx_graph(g, False, edge_attrs=lambda s,p,o:{})
    >>> 'weight' in dg[a][b]
    False
    >>> 'triples' in dg[a][b]
    False

    r   N)r   DiGraphr"   )r   r   r   r(   r   dgs         r   rdflib_to_networkx_digraphr1   ~   s+    p 	BeRzJTJIr   c                     d| ||fgiS r,   r   r%   s      r   r&   r&      r-   r   c                 L    ddl }|j                         }t        | |||fi | |S )a  Converts the given graph into a networkx.Graph.

    As an rdflib.Graph() can contain multiple directed edges between nodes, by
    default adds the a 'triples' attribute to the single DiGraph edge with a
    list of triples between s and o in graph.
    Also by default calculates the edge weight as the len(triples).

    :Parameters:

        - graph: a rdflib.Graph.
        - calc_weights: If true calculate multi-graph edge-count as edge 'weight'
        - edge_attrs: Callable to construct later edge_attributes. It receives
                    3 variables (s, p, o) and should construct a dictionary that is
                    passed to networkx's add_edge(s, o, \*\*attrs) function.

                    By default this will include setting the 'triples' attribute here,
                    which is treated specially by us to be merged. Other attributes of
                    multi-edges will only contain the attributes of the first edge.
                    If you don't want the 'triples' attribute for tracking, set this to
                    `lambda s, p, o: {}`.

    Returns:
        networkx.Graph

    >>> from rdflib import Graph, URIRef, Literal
    >>> g = Graph()
    >>> a, b, l = URIRef('a'), URIRef('b'), Literal('l')
    >>> p, q = URIRef('p'), URIRef('q')
    >>> edges = [(a, p, b), (a, q, b), (b, p, a), (b, p, l)]
    >>> for t in edges:
    ...     g.add(t)
    ...
    >>> ug = rdflib_to_networkx_graph(g)
    >>> ug[a][b]['weight']
    3
    >>> sorted(ug[a][b]['triples']) == [(a, p, b), (a, q, b), (b, p, a)]
    True
    >>> len(ug.edges())
    2
    >>> ug.size()
    2
    >>> ug.size(weight='weight')
    4.0

    >>> ug = rdflib_to_networkx_graph(g, False, edge_attrs=lambda s,p,o:{})
    >>> 'weight' in ug[a][b]
    False
    >>> 'triples' in ug[a][b]
    False
    r   N)r   Graphr"   )r   r   r   r(   r   gs         r   rdflib_to_networkx_graphr6      s+    p 

AeQjIDIHr   termc                     t        d      | iS Nr7   strr%   s      r   r&   r&          Va 0 r   c                     t        d      |iS r9   r:   r%   s      r   r&   r&     r<   r   c                     t        d      |iS r9   r:   r%   s      r   r&   r&     r<   r   c                    ddl }|j                         }|D cg c]  }||j                  d      f }	}|	D ]  \  }}
|
|j                  |<    |D cg c]  }||j	                  d      f }}|D ]  \  }}||j
                  |<    i }| D ]  \  }}}|j                  |      }|3|j                         }|||<    ||||      }|	D ]  \  }}
||   |
|<    |}|j                  |      }|3|j                         }|||<    ||||      }|	D ]  \  }}
||   |
|<    |}|j                  ||      } ||||      }|D ]  \  }}||   ||<     |S c c}w c c}w )a  Converts the given graph into a graph_tool.Graph().

    The subjects and objects are the later vertices of the Graph.
    The predicates become edges.

    :Parameters:
        - graph: a rdflib.Graph.
        - v_prop_names: a list of names for the vertex properties. The default is set
          to ['term'] (see transform_s, transform_o below).
        - e_prop_names: a list of names for the edge properties.
        - transform_s: callable with s, p, o input. Should return a dictionary
          containing a value for each name in v_prop_names. By default is set
          to {'term': s} which in combination with v_prop_names = ['term']
          adds s as 'term' property to the generated vertex for s.
        - transform_p: similar to transform_s, but wrt. e_prop_names. By default
          returns {'term': p} which adds p as a property to the generated
          edge between the vertex for s and the vertex for o.
        - transform_o: similar to transform_s.

    Returns: graph_tool.Graph()

    >>> from rdflib import Graph, URIRef, Literal
    >>> g = Graph()
    >>> a, b, l = URIRef('a'), URIRef('b'), Literal('l')
    >>> p, q = URIRef('p'), URIRef('q')
    >>> edges = [(a, p, b), (a, q, b), (b, p, a), (b, p, l)]
    >>> for t in edges:
    ...     g.add(t)
    ...
    >>> mdg = rdflib_to_graphtool(g)
    >>> len(list(mdg.edges()))
    4
    >>> from graph_tool import util as gt_util
    >>> vpterm = mdg.vertex_properties['term']
    >>> va = gt_util.find_vertex(mdg, vpterm, a)[0]
    >>> vb = gt_util.find_vertex(mdg, vpterm, b)[0]
    >>> vl = gt_util.find_vertex(mdg, vpterm, l)[0]
    >>> (va, vb) in [(e.source(), e.target()) for e in list(mdg.edges())]
    True
    >>> epterm = mdg.edge_properties['term']
    >>> len(list(gt_util.find_edge(mdg, epterm, p))) == 3
    True
    >>> len(list(gt_util.find_edge(mdg, epterm, q))) == 1
    True

    >>> mdg = rdflib_to_graphtool(
    ...     g,
    ...     e_prop_names=[str('name')],
    ...     transform_p=lambda s, p, o: {str('name'): unicode(p)})
    >>> epterm = mdg.edge_properties['name']
    >>> len(list(gt_util.find_edge(mdg, epterm, unicode(p)))) == 3
    True
    >>> len(list(gt_util.find_edge(mdg, epterm, unicode(q)))) == 1
    True

    r   Nobject)	
graph_toolr4   new_vertex_propertyvertex_propertiesnew_edge_propertyedge_propertiesget
add_vertexr   )r   v_prop_namese_prop_namesr   transform_pr   gtr5   vpnvpropsvpropepnepropsepropnode_to_vertexr   r   r   svv	tmp_propsoves                          r   rdflib_to_graphtoolrX      s   @ 

A@LMsA))(34MFM )
U#(C )>JKssA''12KFK '
U!&#'N &1a":A !N1#Aq!,I$ *
U$S>a*B":A !N1#Aq!,I$ *
U$S>a*BJJr21a(	  	&JC ~E!H	&+&. H= N Ls   EE)__doc__logging	getLogger__name__loggerr   r"   r*   r1   r6   r;   rX   r   r   r   <module>r^      s~   	 			8	$ -5b 13p 7<B 7<B f+f+000br   